scholarly journals Rainfall Doppler Velocity Measurements from Spaceborne Radar: Overcoming Nonuniform Beam-Filling Effects

Author(s):  
Simone Tanelli ◽  
Eastwood Im ◽  
Stephen L. Durden ◽  
Luca Facheris ◽  
Dino Giuli ◽  
...  
2014 ◽  
Vol 31 (2) ◽  
pp. 366-386 ◽  
Author(s):  
Pavlos Kollias ◽  
Simone Tanelli ◽  
Alessandro Battaglia ◽  
Aleksandra Tatarevic

Abstract The joint European Space Agency–Japan Aerospace Exploration Agency (ESA–JAXA) Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is scheduled for launch in 2016 and features the first atmospheric Cloud Profiling Radar (CPR) with Doppler capability in space. Here, the uncertainty of the CPR Doppler velocity measurements in cirrus clouds and large-scale precipitation areas is discussed. These regimes are characterized by weak vertical motion and relatively horizontally homogeneous conditions and thus represent optimum conditions for acquiring high-quality CPR Doppler measurements. A large dataset of radar reflectivity observations from ground-based radars is used to examine the homogeneity of the cloud fields at the horizontal scales of interest. In addition, a CPR instrument model that uses as input ground-based radar observations and outputs simulations of CPR Doppler measurements is described. The simulator accurately accounts for the beam geometry, nonuniform beam-filling, and signal integration effects, and it is applied to representative cases of cirrus cloud and stratiform precipitation. The simulated CPR Doppler velocities are compared against those derived from the ground-based radars. The unfolding of the CPR Doppler velocity is achieved using simple conditional rules and a smoothness requirement for the CPR Doppler measurements. The application of nonuniform beam-filling Doppler velocity bias-correction algorithms is found necessary even under these optimum conditions to reduce the CPR Doppler biases. Finally, the analysis indicates that a minimum along-track integration of 5000 m is needed to reduce the uncertainty in the CPR Doppler measurements to below 0.5 m s−1 and thus enable the detection of the melting layer and the characterization of the rain- and ice-layer Doppler velocities.


1996 ◽  
Vol 271 (4) ◽  
pp. H1267-H1276 ◽  
Author(s):  
N. L. Greenberg ◽  
P. M. Vandervoort ◽  
J. D. Thomas

Pulsed and continuous wave Doppler velocity measurements are routinely used in clinical practice to assess severity of stenotic and regurgitant valves or to estimate intracavitary pressures. However, this method only evaluates the convective component of the pressure gradient (based on the velocity measurements) and neglects the contribution of inertial forces that can be important, in particular for flow across nonstenotic valves. Digital processing of color Doppler ultrasound data was used to noninvasively estimate both the convective and inertial components of the transmitral pressure difference. Simultaneous pressure and velocity measurements were obtained in six anesthetized open-chest dogs. The instantaneous diastolic transmitral pressure difference is computed from the M mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation. The inclusion of the inertial forces ([delta PI]max = 0.90 +/- 0.30 mmHg) in the noninvasive pressure difference calculation significantly increased the correlation with catheter-based measurement (r = 0.15 +/- 0.23 vs. 0.85 +/- 0.08; P < 0.0001) and also allowed an accurate approximation of the peak early filling pressure difference ([delta PC+I]max = 0.95[delta Pcath]max + 0.07, r = 0.92, P < 0.001, error: epsilon C+I ([delta PC+I]max-[delta Pcath]max) = 0.01 +/- 0.24 mmHg, N = 90]. Noninvasive estimation of left ventricular filling pressure differences using this technique will improve the understanding of diastolic filling and function of the heart.


2008 ◽  
Vol 47 (11) ◽  
pp. 2929-2945 ◽  
Author(s):  
Olivier Bousquet ◽  
Pierre Tabary ◽  
Jacques Parent du Châtelet

Abstract The recent deployment of an innovative triple pulse rise time (PRT) scheme within the French operational radar network allows for the simultaneous collection of reflectivity and radial velocity measurements up to a range of 250 km with no ambiguity. This achievement brings new perspectives in terms of operational exploitation of Doppler measurements including the capability to consistently perform multiple-Doppler wind synthesis in a fully operational framework. Using real and simulated Doppler observations, the authors show that the 3D wind fields retrieved in that framework can definitely be relied upon to achieve a consistent and detailed mapping of the airflow structure in various precipitation regimes despite radar baselines averaging ∼180 km and very limited scanning strategies. This achievement could be easily transposed to other operational networks and represents a remarkable opportunity to add further value to operational Doppler velocity measurements.


Sign in / Sign up

Export Citation Format

Share Document